Properties

Label 66300.bf
Number of curves $1$
Conductor $66300$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 66300.bf1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66300.bf do not have complex multiplication.

Modular form 66300.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + q^{13} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 66300.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66300.bf1 66300be1 \([0, 1, 0, -18, 33]\) \(-1703680/663\) \(-265200\) \([]\) \(6912\) \(-0.25006\) \(\Gamma_0(N)\)-optimal