| Label | Cremona label | Class | Cremona class | Class size | Class degree | Conductor | Discriminant | Rank | Torsion | $\textrm{End}^0(E_{\overline\Q})$ | CM | Sato-Tate | Semistable | Potentially good | Nonmax $\ell$ | $\ell$-adic images | mod-$\ell$ images | Adelic level | Adelic index | Adelic genus | Regulator | $Ш_{\textrm{an}}$ | Ш primes | Integral points | Modular degree | Faltings height | j-invariant | $abc$ quality | Szpiro ratio | Weierstrass coefficients | Weierstrass equation | mod-$m$ images | MW-generators | 
      
      
              | 663.a1 | 663b5 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{16} \cdot 13 \cdot 17^{2}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 16.48.0.47 | 2B | $3536$ | $192$ | $1$ | $2.975812071$ | $1$ |  | $0$ | $1024$ | $1.155155$ | $908031902324522977/161726530797$ | $0.99284$ | $6.36470$ | $[1, 1, 1, -20174, -1111138]$ | \(y^2+xy+y=x^3+x^2-20174x-1111138\) | 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 16.48.0-16.f.2.11, 26.6.0.b.1, $\ldots$ | $[(-329/2, 427/2)]$ | 
      
              | 663.a2 | 663b3 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{8} \cdot 13^{2} \cdot 17^{4}  \) | $1$ | $\Z/2\Z\oplus\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 8.48.0.33 | 2Cs | $1768$ | $192$ | $1$ | $1.487906035$ | $1$ |  | $6$ | $512$ | $0.808582$ | $296380748763217/92608836489$ | $0.96390$ | $5.12911$ | $[1, 1, 1, -1389, -14094]$ | \(y^2+xy+y=x^3+x^2-1389x-14094\) | 2.6.0.a.1, 4.24.0-4.b.1.1, 8.48.0-8.d.2.2, 52.48.0-52.c.1.2, 104.96.0.?, $\ldots$ | $[(-27, 81)]$ | 
      
              | 663.a3 | 663b2 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{4} \cdot 13^{4} \cdot 17^{2}  \) | $1$ | $\Z/2\Z\oplus\Z/4\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 8.48.0.27 | 2Cs | $1768$ | $192$ | $1$ | $2.975812071$ | $1$ |  | $10$ | $256$ | $0.462009$ | $17806161424897/668584449$ | $0.93643$ | $4.69626$ | $[1, 1, 1, -544, 4496]$ | \(y^2+xy+y=x^3+x^2-544x+4496\) | 2.6.0.a.1, 4.24.0-4.b.1.3, 8.48.0-8.d.1.10, 68.48.0-68.c.1.1, 104.96.0.?, $\ldots$ | $[(79, 640)]$ | 
      
              | 663.a4 | 663b1 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{2} \cdot 13^{2} \cdot 17  \) | $1$ | $\Z/4\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 16.48.0.31 | 2B | $3536$ | $192$ | $1$ | $1.487906035$ | $1$ |  | $7$ | $128$ | $0.115435$ | $17319700013617/25857$ | $0.93528$ | $4.69200$ | $[1, 1, 1, -539, 4592]$ | \(y^2+xy+y=x^3+x^2-539x+4592\) | 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 16.48.0-16.f.1.4, 34.6.0.a.1, $\ldots$ | $[(9, 19)]$ | 
      
              | 663.a5 | 663b4 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  - 3^{2} \cdot 13^{8} \cdot 17  \) | $1$ | $\Z/4\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 8.48.0.162 | 2B | $3536$ | $192$ | $1$ | $1.487906035$ | $1$ |  | $8$ | $512$ | $0.808582$ | $1193377118543/124806800313$ | $1.00139$ | $5.07932$ | $[1, 1, 1, 221, 17042]$ | \(y^2+xy+y=x^3+x^2+221x+17042\) | 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.ba.1.2, 68.24.0-68.h.1.2, 136.96.0.?, $\ldots$ | $[(6, 133)]$ | 
      
              | 663.a6 | 663b6 | 663.a | 663b | $6$ | $8$ | \(  3 \cdot 13 \cdot 17  \) | \(  - 3^{4} \cdot 13 \cdot 17^{8}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 8.48.0.178 | 2B | $3536$ | $192$ | $1$ | $0.743953017$ | $1$ |  | $4$ | $1024$ | $1.155155$ | $6439735268725823/7345472585373$ | $0.98854$ | $5.60297$ | $[1, 1, 1, 3876, -89910]$ | \(y^2+xy+y=x^3+x^2+3876x-89910\) | 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.ba.2.6, 52.24.0-52.h.1.1, 104.96.0.?, $\ldots$ | $[(25, 140)]$ | 
      
              | 663.b1 | 663c2 | 663.b | 663c | $2$ | $2$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{8} \cdot 13 \cdot 17^{2}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 2.3.0.1 | 2B | $884$ | $12$ | $0$ | $0.204192024$ | $1$ |  | $10$ | $128$ | $0.129896$ | $104154702625/24649677$ | $0.90385$ | $3.90488$ | $[1, 0, 0, -98, 279]$ | \(y^2+xy=x^3-98x+279\) | 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? | $[(1, 13)]$ | 
      
              | 663.b2 | 663c1 | 663.b | 663c | $2$ | $2$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{4} \cdot 13^{2} \cdot 17  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 2.3.0.1 | 2B | $884$ | $12$ | $0$ | $0.408384049$ | $1$ |  | $9$ | $64$ | $-0.216677$ | $3981876625/232713$ | $0.86491$ | $3.40246$ | $[1, 0, 0, -33, -72]$ | \(y^2+xy=x^3-33x-72\) | 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? | $[(-3, 3)]$ | 
      
              | 663.c1 | 663a2 | 663.c | 663a | $2$ | $2$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{12} \cdot 13 \cdot 17^{2}  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 2.3.0.1 | 2B | $884$ | $12$ | $0$ | $1$ | $1$ |  | $0$ | $576$ | $0.476744$ | $3885442650361/1996623837$ | $0.95822$ | $4.46195$ | $[1, 1, 0, -327, -900]$ | \(y^2+xy=x^3+x^2-327x-900\) | 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? | $[ ]$ | 
      
              | 663.c2 | 663a1 | 663.c | 663a | $2$ | $2$ | \(  3 \cdot 13 \cdot 17  \) | \(  3^{6} \cdot 13^{2} \cdot 17  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ | ✓ |  | $2$ | 2.3.0.1 | 2B | $884$ | $12$ | $0$ | $1$ | $1$ |  | $1$ | $288$ | $0.130171$ | $2000852317801/2094417$ | $0.91984$ | $4.35979$ | $[1, 1, 0, -262, -1745]$ | \(y^2+xy=x^3+x^2-262x-1745\) | 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? | $[ ]$ |