Properties

Label 663a
Number of curves $2$
Conductor $663$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("663.c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 663a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
663.c2 663a1 [1, 1, 0, -262, -1745] [2] 288 \(\Gamma_0(N)\)-optimal
663.c1 663a2 [1, 1, 0, -327, -900] [2] 576  

Rank

sage: E.rank()
 

The elliptic curves in class 663a have rank \(0\).

Modular form 663.2.a.c

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} - q^{4} - 4q^{5} - q^{6} + 2q^{7} - 3q^{8} + q^{9} - 4q^{10} + 6q^{11} + q^{12} - q^{13} + 2q^{14} + 4q^{15} - q^{16} + q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.