Properties

Label 66150.jr
Number of curves $1$
Conductor $66150$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 66150.jr1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66150.jr do not have complex multiplication.

Modular form 66150.2.a.jr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} + 4 q^{11} - q^{13} + q^{16} + q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 66150.jr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66150.jr1 66150kf1 \([1, -1, 1, -1043930, -389171303]\) \(15454515/896\) \(7294408591050000000\) \([]\) \(1451520\) \(2.3733\) \(\Gamma_0(N)\)-optimal