Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-367931x-85931386\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-367931xz^2-85931386z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-476837955x-4007784219714\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1401/4, 1397/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 66066 \) | = | $2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $114276210048$ | = | $2^{7} \cdot 3^{4} \cdot 7^{2} \cdot 11^{3} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{4138501360819965875}{85857408} \) | = | $2^{-7} \cdot 3^{-4} \cdot 5^{3} \cdot 7^{-2} \cdot 13^{-2} \cdot 23^{6} \cdot 607^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6514279411824760600501060337$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0519541229828834240346201392$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0693068572444249$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.510605878093347$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.19384656133342960631448807876$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5507724906674368505159046300 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.550772491 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.193847 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.550772491\end{aligned}$$
Modular invariants
Modular form 66066.2.a.bd
For more coefficients, see the Downloads section to the right.
Modular degree: | 344064 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1144 = 2^{3} \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 316 & 1 \\ 207 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 353 & 4 \\ 706 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 571 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1141 & 4 \\ 1140 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 716 & 433 \\ 1001 & 144 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[1144])$ is a degree-$44281036800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1144\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 11 \) |
$3$ | split multiplicative | $4$ | \( 22022 = 2 \cdot 7 \cdot 11^{2} \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 4719 = 3 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $42$ | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 5082 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 66066z
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.7198048.1 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3315961280659456.32 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | split | split | add | split |
$\lambda$-invariant(s) | 4 | 1 | 3 | - | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.