Properties

Label 66066.cl
Number of curves $4$
Conductor $66066$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66066.cl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66066.cl do not have complex multiplication.

Modular form 66066.2.a.cl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + q^{12} - q^{13} - q^{14} + q^{16} - 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 2 & 6 \\ 3 & 1 & 6 & 2 \\ 2 & 6 & 1 & 3 \\ 6 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66066.cl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66066.cl1 66066ck4 \([1, 0, 0, -9333398, -1554270684]\) \(50755950018496437625/28784156647454208\) \(50992889334520624178688\) \([2]\) \(7464960\) \(3.0471\)  
66066.cl2 66066ck2 \([1, 0, 0, -6877703, -6943011855]\) \(20309435779581663625/64280368152\) \(113876593283725272\) \([2]\) \(2488320\) \(2.4978\)  
66066.cl3 66066ck3 \([1, 0, 0, -5926038, 5525541924]\) \(12991547986467765625/71708514189312\) \(127036007105731756032\) \([2]\) \(3732480\) \(2.7005\)  
66066.cl4 66066ck1 \([1, 0, 0, -435663, -105430599]\) \(5162020164015625/278574424128\) \(493511585382623808\) \([2]\) \(1244160\) \(2.1512\) \(\Gamma_0(N)\)-optimal