Properties

Label 66066.bo
Number of curves $2$
Conductor $66066$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66066.bo have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66066.bo do not have complex multiplication.

Modular form 66066.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{7} + q^{8} + q^{9} - 2 q^{10} - q^{12} - q^{13} - q^{14} + 2 q^{15} + q^{16} + 6 q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66066.bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66066.bo1 66066bm2 \([1, 1, 1, -4065179, 2568607625]\) \(3150856123998227/613043357472\) \(1445524169233989997152\) \([2]\) \(4055040\) \(2.7771\)  
66066.bo2 66066bm1 \([1, 1, 1, -3852219, 2908406601]\) \(2681158320936467/141732864\) \(334198679407617024\) \([2]\) \(2027520\) \(2.4305\) \(\Gamma_0(N)\)-optimal