Properties

Label 65559d
Number of curves $4$
Conductor $65559$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 65559d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(13\)\(1 - T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 65559d do not have complex multiplication.

Modular form 65559.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + 2 q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} - 4 q^{11} - q^{12} - q^{13} + 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 65559d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65559.f4 65559d1 \([1, 0, 1, 805, -18679]\) \(12167/39\) \(-185254065399\) \([2]\) \(69120\) \(0.84527\) \(\Gamma_0(N)\)-optimal
65559.f3 65559d2 \([1, 0, 1, -7600, -220399]\) \(10218313/1521\) \(7224908550561\) \([2, 2]\) \(138240\) \(1.1918\)  
65559.f2 65559d3 \([1, 0, 1, -32815, 2069123]\) \(822656953/85683\) \(407003181681603\) \([2]\) \(276480\) \(1.5384\)  
65559.f1 65559d4 \([1, 0, 1, -116865, -15386381]\) \(37159393753/1053\) \(5001859765773\) \([2]\) \(276480\) \(1.5384\)