Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-597567x-130438726\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-597567xz^2-130438726z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-597567x-130438726\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-542, 5850)$ | $1.1043144743237273014926394936$ | $\infty$ |
| $(-242, 0)$ | $0$ | $2$ |
Integral points
\((-542,\pm 5850)\), \( \left(-242, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 65520 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $6306351187500000000$ | = | $2^{8} \cdot 3^{8} \cdot 5^{12} \cdot 7 \cdot 13^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{126449185587012304}{33791748046875} \) | = | $2^{4} \cdot 3^{-2} \cdot 5^{-12} \cdot 7^{-1} \cdot 13^{-3} \cdot 17^{3} \cdot 11717^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3156609458925040651071000073$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3042566811851523464646559745$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.025107934414267$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.64517166792936$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1043144743237273014926394936$ |
|
| Real period: | $\Omega$ | ≈ | $0.17513827508936353303389607387$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ 1\cdot2^{2}\cdot( 2^{2} \cdot 3 )\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.9626783588138940297550963855 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.962678359 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.175138 \cdot 1.104314 \cdot 144}{2^2} \\ & \approx 6.962678359\end{aligned}$$
Modular invariants
Modular form 65520.2.a.cu
For more coefficients, see the Downloads section to the right.
| Modular degree: | 995328 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $13$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1081 & 12 \\ 1080 & 13 \end{array}\right),\left(\begin{array}{rr} 727 & 1080 \\ 722 & 1019 \end{array}\right),\left(\begin{array}{rr} 90 & 443 \\ 91 & 454 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1042 & 1083 \end{array}\right),\left(\begin{array}{rr} 514 & 3 \\ 141 & 1084 \end{array}\right),\left(\begin{array}{rr} 478 & 3 \\ 129 & 1084 \end{array}\right)$.
The torsion field $K:=\Q(E[1092])$ is a degree-$2536095744$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1092\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
| $3$ | additive | $8$ | \( 112 = 2^{4} \cdot 7 \) |
| $5$ | split multiplicative | $6$ | \( 13104 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 65520ds
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 5460e4, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{91}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.13104.3 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{91})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.108884466432.11 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.22751526260736.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.2747437056.2 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.113266671241305261260051627389564391424000000000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | split | nonsplit | ss | split | ss | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 4 | 1 | 1,1 | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.