Properties

Label 65520dr
Number of curves $4$
Conductor $65520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 65520dr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 65520dr do not have complex multiplication.

Modular form 65520.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} + q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 65520dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65520.cs4 65520dr1 \([0, 0, 0, -33627, 2370314]\) \(1408317602329/2153060\) \(6429002711040\) \([2]\) \(165888\) \(1.3573\) \(\Gamma_0(N)\)-optimal
65520.cs3 65520dr2 \([0, 0, 0, -43707, 832106]\) \(3092354182009/1689383150\) \(5044471055769600\) \([2]\) \(331776\) \(1.7039\)  
65520.cs2 65520dr3 \([0, 0, 0, -136587, -17115334]\) \(94376601570889/12235496000\) \(36534995288064000\) \([2]\) \(497664\) \(1.9066\)  
65520.cs1 65520dr4 \([0, 0, 0, -2112267, -1181581126]\) \(349046010201856969/7245875000\) \(21636066816000000\) \([2]\) \(995328\) \(2.2532\)