Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-20000180667x+1088676007236074\)
|
(homogenize, simplify) |
\(y^2z=x^3-20000180667xz^2+1088676007236074z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-20000180667x+1088676007236074\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(81583, 15750)$ | $2.5920230727370210611364815797$ | $\infty$ |
$(81709, 0)$ | $0$ | $2$ |
Integral points
\((-147667,\pm 28672000)\), \((81583,\pm 15750)\), \( \left(81709, 0\right) \), \((922598,\pm 876321880)\)
Invariants
Conductor: | $N$ | = | \( 65520 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $801498940679273840640000000$ | = | $2^{36} \cdot 3^{14} \cdot 5^{7} \cdot 7^{4} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{296304326013275547793071733369}{268420373544960000000} \) | = | $2^{-24} \cdot 3^{-8} \cdot 5^{-7} \cdot 7^{-4} \cdot 13^{-1} \cdot 59^{3} \cdot 112995371^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.4606060400308720963926387809$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.2181527151368719412777840410$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.052714565604007$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.463462409430888$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5920230727370210611364815797$ |
|
Real period: | $\Omega$ | ≈ | $0.042071278938783842648082624478$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 224 $ = $ 2^{2}\cdot2\cdot7\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.1067846396974376070428304724 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.106784640 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.042071 \cdot 2.592023 \cdot 224}{2^2} \\ & \approx 6.106784640\end{aligned}$$
Modular invariants
Modular form 65520.2.a.dn
For more coefficients, see the Downloads section to the right.
Modular degree: | 82575360 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{28}^{*}$ | additive | -1 | 4 | 36 | 24 |
$3$ | $2$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8128 & 3 \\ 2805 & 7282 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 9551 & 9552 \\ 7722 & 9545 \end{array}\right),\left(\begin{array}{rr} 4099 & 4098 \\ 8658 & 6835 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 2188 & 7281 \\ 8031 & 3646 \end{array}\right),\left(\begin{array}{rr} 7801 & 3648 \\ 5724 & 3673 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
$3$ | additive | $8$ | \( 7280 = 2^{4} \cdot 5 \cdot 7 \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 13104 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 65520.dn
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730.k3, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{39}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{15}, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.97742882250000.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.131469156000000.20 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | split | split | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.