Properties

Label 6552.q
Number of curves $1$
Conductor $6552$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 6552.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6552.q1 6552g1 \([0, 0, 0, -612, 6372]\) \(-135834624/15379\) \(-2870090496\) \([]\) \(3072\) \(0.55171\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6552.q1 has rank \(1\).

Complex multiplication

The elliptic curves in class 6552.q do not have complex multiplication.

Modular form 6552.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 2 q^{11} + q^{13} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display