Properties

Label 65025.k
Number of curves $1$
Conductor $65025$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 65025.k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 65025.k do not have complex multiplication.

Modular form 65025.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 2 q^{7} + 3 q^{8} + 4 q^{11} - q^{13} + 2 q^{14} - q^{16} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 65025.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65025.k1 65025cl1 \([1, -1, 1, -196430, -6210678]\) \(35242105/19683\) \(468138695916796875\) \([]\) \(544320\) \(2.0809\) \(\Gamma_0(N)\)-optimal