Properties

Label 650.e
Number of curves 11
Conductor 650650
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 650.e1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
5511
13131T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1T+3T2 1 - T + 3 T^{2} 1.3.ab
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 1T+11T2 1 - T + 11 T^{2} 1.11.ab
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
1919 1+3T+19T2 1 + 3 T + 19 T^{2} 1.19.d
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 650.e do not have complex multiplication.

Modular form 650.2.a.e

Copy content sage:E.q_eigenform(10)
 
qq2+q3+q4q6+4q7q82q9+q11+q12+q134q14+q16+7q17+2q183q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{6} + 4 q^{7} - q^{8} - 2 q^{9} + q^{11} + q^{12} + q^{13} - 4 q^{14} + q^{16} + 7 q^{17} + 2 q^{18} - 3 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 650.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
650.e1 650d1 [1,0,1,299,22048][1, 0, 1, 299, 22048] 304175/21632304175/21632 211250000000-211250000000 [][] 840840 0.852580.85258 Γ0(N)\Gamma_0(N)-optimal