Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+2926x+231403\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+2926xz^2+231403z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+3792069x+10784962134\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-17, 429)$ | $1.1978553271260801526438525625$ | $\infty$ |
$(-46, 23)$ | $0$ | $2$ |
Integral points
\( \left(-46, 23\right) \), \( \left(-17, 429\right) \), \( \left(-17, -412\right) \), \( \left(54, 713\right) \), \( \left(54, -767\right) \), \( \left(273, 4489\right) \), \( \left(273, -4762\right) \)
Invariants
Conductor: | $N$ | = | \( 64757 \) | = | $7 \cdot 11 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $-24686952291463$ | = | $-1 \cdot 7^{3} \cdot 11^{2} \cdot 29^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{4657463}{41503} \) | = | $7^{-3} \cdot 11^{-2} \cdot 167^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2510547635211157339496384947$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.43259315147212127964199752148$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8926246805538307$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4503970959088077$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1978553271260801526438525625$ |
|
Real period: | $\Omega$ | ≈ | $0.49239251786281528063488044617$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.1796300011179937258766522691 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.179630001 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.492393 \cdot 1.197855 \cdot 8}{2^2} \\ & \approx 1.179630001\end{aligned}$$
Modular invariants
Modular form 64757.2.a.b
For more coefficients, see the Downloads section to the right.
Modular degree: | 145152 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$29$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 308 = 2^{2} \cdot 7 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 90 & 1 \\ 263 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 232 \\ 76 & 231 \end{array}\right),\left(\begin{array}{rr} 57 & 4 \\ 114 & 9 \end{array}\right),\left(\begin{array}{rr} 305 & 4 \\ 304 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[308])$ is a degree-$212889600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/308\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 5887 = 7 \cdot 29^{2} \) |
$3$ | good | $2$ | \( 9251 = 11 \cdot 29^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 9251 = 11 \cdot 29^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 5887 = 7 \cdot 29^{2} \) |
$29$ | additive | $422$ | \( 77 = 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 64757b
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 77c1, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.11397232.5 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.6364947965829376.44 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.22647043551627.2 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | ord | ord | nonsplit | nonsplit | ord | ord | ss | ord | add | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1,1 | 1 | - | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.