Properties

Label 64680.da
Number of curves $4$
Conductor $64680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("da1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 64680.da have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 64680.da do not have complex multiplication.

Modular form 64680.2.a.da

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - q^{11} - 2 q^{13} + q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 64680.da

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64680.da1 64680bd4 \([0, 1, 0, -1449240, 671036400]\) \(1397097631688978/433125\) \(104359368960000\) \([2]\) \(786432\) \(2.0524\)  
64680.da2 64680bd2 \([0, 1, 0, -90960, 10369008]\) \(690862540036/12006225\) \(1446420853785600\) \([2, 2]\) \(393216\) \(1.7058\)  
64680.da3 64680bd1 \([0, 1, 0, -11580, -236160]\) \(5702413264/2525985\) \(76077979971840\) \([2]\) \(196608\) \(1.3592\) \(\Gamma_0(N)\)-optimal
64680.da4 64680bd3 \([0, 1, 0, -2760, 29702448]\) \(-9653618/1581886845\) \(-381147966315325440\) \([2]\) \(786432\) \(2.0524\)