| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 6450.a1 |
6450j1 |
6450.a |
6450j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2 \cdot 3^{2} \cdot 5^{9} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$0.842719286$ |
$1$ |
|
$4$ |
$4800$ |
$0.452049$ |
$-456533/774$ |
$0.80440$ |
$3.29291$ |
$[1, 1, 0, -200, -2250]$ |
\(y^2+xy=x^3+x^2-200x-2250\) |
1720.2.0.? |
$[(35, 170)]$ |
$1$ |
| 6450.b1 |
6450c3 |
6450.b |
6450c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{18} \cdot 43^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$7.117991280$ |
$1$ |
|
$3$ |
$207360$ |
$2.438927$ |
$4465136636671380769/2096375976562500$ |
$1.08124$ |
$5.99640$ |
$[1, 1, 0, -857650, -133160000]$ |
\(y^2+xy=x^3+x^2-857650x-133160000\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, $\ldots$ |
$[(8250, 740450)]$ |
$1$ |
| 6450.b2 |
6450c1 |
6450.b |
6450c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{6} \cdot 3^{9} \cdot 5^{10} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$2.372663760$ |
$1$ |
|
$5$ |
$69120$ |
$1.889622$ |
$599437478278595809/33854760000$ |
$0.99177$ |
$5.76748$ |
$[1, 1, 0, -439150, 111824500]$ |
\(y^2+xy=x^3+x^2-439150x+111824500\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, $\ldots$ |
$[(255, 3935)]$ |
$1$ |
| 6450.b3 |
6450c2 |
6450.b |
6450c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{3} \cdot 3^{18} \cdot 5^{8} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$4.745327520$ |
$1$ |
|
$2$ |
$138240$ |
$2.236195$ |
$-502780379797811809/143268096832200$ |
$0.99591$ |
$5.79308$ |
$[1, 1, 0, -414150, 125149500]$ |
\(y^2+xy=x^3+x^2-414150x+125149500\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, $\ldots$ |
$[(295, 5215)]$ |
$1$ |
| 6450.b4 |
6450c4 |
6450.b |
6450c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2 \cdot 3^{6} \cdot 5^{12} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$14.23598256$ |
$1$ |
|
$0$ |
$414720$ |
$2.785500$ |
$200541749524551119231/144008551960031250$ |
$1.03428$ |
$6.43015$ |
$[1, 1, 0, 3048600, -1004253750]$ |
\(y^2+xy=x^3+x^2+3048600x-1004253750\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.1, $\ldots$ |
$[(6860125/29, 18260553800/29)]$ |
$1$ |
| 6450.c1 |
6450d1 |
6450.c |
6450d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{8} \cdot 5^{2} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6528$ |
$0.848195$ |
$-9137635610327905/1128492$ |
$0.98656$ |
$4.55664$ |
$[1, 1, 0, -12735, -558495]$ |
\(y^2+xy=x^3+x^2-12735x-558495\) |
86.2.0.? |
$[ ]$ |
$1$ |
| 6450.d1 |
6450i2 |
6450.d |
6450i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{7} \cdot 3^{2} \cdot 5^{3} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$0.701953798$ |
$1$ |
|
$6$ |
$10752$ |
$0.960310$ |
$20170293914861/3938458752$ |
$0.96698$ |
$4.04289$ |
$[1, 1, 0, -2835, 46125]$ |
\(y^2+xy=x^3+x^2-2835x+46125\) |
2.3.0.a.1, 24.6.0.j.1, 40.6.0.b.1, 60.6.0.c.1, 120.12.0.? |
$[(51, 168)]$ |
$1$ |
| 6450.d2 |
6450i1 |
6450.d |
6450i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3 \cdot 5^{3} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1.403907597$ |
$1$ |
|
$3$ |
$5376$ |
$0.613736$ |
$42838260499/90882048$ |
$0.94610$ |
$3.45305$ |
$[1, 1, 0, 365, 4525]$ |
\(y^2+xy=x^3+x^2+365x+4525\) |
2.3.0.a.1, 24.6.0.j.1, 30.6.0.a.1, 40.6.0.c.1, 120.12.0.? |
$[(-1, 65)]$ |
$1$ |
| 6450.e1 |
6450a2 |
6450.e |
6450a |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3 \cdot 5^{6} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$18060$ |
$96$ |
$2$ |
$20.03918476$ |
$1$ |
|
$0$ |
$164640$ |
$2.223640$ |
$-23769846831649063249/3261823333284$ |
$1.04406$ |
$6.18705$ |
$[1, 1, 0, -1497525, -706065375]$ |
\(y^2+xy=x^3+x^2-1497525x-706065375\) |
7.24.0.a.2, 35.48.0-7.a.2.1, 516.2.0.?, 3612.48.2.?, 18060.96.2.? |
$[(641606156/319, 15818761274049/319)]$ |
$1$ |
| 6450.e2 |
6450a1 |
6450.e |
6450a |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3^{7} \cdot 5^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$18060$ |
$96$ |
$2$ |
$2.862740681$ |
$1$ |
|
$2$ |
$23520$ |
$1.250687$ |
$444369620591/1540767744$ |
$0.99664$ |
$4.34166$ |
$[1, 1, 0, 3975, 217125]$ |
\(y^2+xy=x^3+x^2+3975x+217125\) |
7.24.0.a.1, 35.48.0-7.a.1.1, 516.2.0.?, 3612.48.2.?, 18060.96.2.? |
$[(146, 1911)]$ |
$1$ |
| 6450.f1 |
6450f2 |
6450.f |
6450f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{17} \cdot 3^{8} \cdot 5^{3} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1720$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$104448$ |
$2.228817$ |
$37767168555963845320349/1590072311808$ |
$1.08147$ |
$6.47687$ |
$[1, 1, 0, -3494890, 2513314900]$ |
\(y^2+xy=x^3+x^2-3494890x+2513314900\) |
2.3.0.a.1, 40.6.0.b.1, 344.6.0.?, 860.6.0.?, 1720.12.0.? |
$[ ]$ |
$1$ |
| 6450.f2 |
6450f1 |
6450.f |
6450f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{34} \cdot 3^{4} \cdot 5^{3} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1720$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$52224$ |
$1.882242$ |
$-9177493130077937309/59837484367872$ |
$1.06161$ |
$5.52938$ |
$[1, 1, 0, -218090, 39330900]$ |
\(y^2+xy=x^3+x^2-218090x+39330900\) |
2.3.0.a.1, 40.6.0.c.1, 344.6.0.?, 430.6.0.?, 1720.12.0.? |
$[ ]$ |
$1$ |
| 6450.g1 |
6450b1 |
6450.g |
6450b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{2} \cdot 3 \cdot 5^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1032$ |
$12$ |
$0$ |
$0.625162682$ |
$1$ |
|
$9$ |
$1536$ |
$0.015223$ |
$912673/516$ |
$0.90862$ |
$2.66544$ |
$[1, 1, 0, -50, 0]$ |
\(y^2+xy=x^3+x^2-50x\) |
2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? |
$[(-5, 15)]$ |
$1$ |
| 6450.g2 |
6450b2 |
6450.g |
6450b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2 \cdot 3^{2} \cdot 5^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1032$ |
$12$ |
$0$ |
$1.250325364$ |
$1$ |
|
$4$ |
$3072$ |
$0.361796$ |
$56181887/33282$ |
$0.96315$ |
$3.13512$ |
$[1, 1, 0, 200, 250]$ |
\(y^2+xy=x^3+x^2+200x+250\) |
2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? |
$[(5, 35)]$ |
$1$ |
| 6450.h1 |
6450g1 |
6450.h |
6450g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33600$ |
$1.529781$ |
$556832393083/325005696$ |
$1.02028$ |
$4.73452$ |
$[1, 1, 0, 21425, -102875]$ |
\(y^2+xy=x^3+x^2+21425x-102875\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 6450.i1 |
6450e1 |
6450.i |
6450e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15360$ |
$1.047012$ |
$770842973809/66873600$ |
$0.91571$ |
$4.22117$ |
$[1, 1, 0, -4775, 115125]$ |
\(y^2+xy=x^3+x^2-4775x+115125\) |
2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? |
$[ ]$ |
$1$ |
| 6450.i2 |
6450e2 |
6450.i |
6450e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{7} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30720$ |
$1.393587$ |
$1009328859791/8734528080$ |
$0.96292$ |
$4.55237$ |
$[1, 1, 0, 5225, 545125]$ |
\(y^2+xy=x^3+x^2+5225x+545125\) |
2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? |
$[ ]$ |
$1$ |
| 6450.j1 |
6450h2 |
6450.j |
6450h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{9} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1720$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15360$ |
$1.082331$ |
$4582567781/1198152$ |
$0.96780$ |
$4.18732$ |
$[1, 1, 0, -4325, -82875]$ |
\(y^2+xy=x^3+x^2-4325x-82875\) |
2.3.0.a.1, 40.6.0.b.1, 344.6.0.?, 860.6.0.?, 1720.12.0.? |
$[ ]$ |
$1$ |
| 6450.j2 |
6450h1 |
6450.j |
6450h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{6} \cdot 3^{2} \cdot 5^{9} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1720$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$7680$ |
$0.735757$ |
$17373979/24768$ |
$0.93316$ |
$3.59516$ |
$[1, 1, 0, 675, -7875]$ |
\(y^2+xy=x^3+x^2+675x-7875\) |
2.3.0.a.1, 40.6.0.c.1, 344.6.0.?, 430.6.0.?, 1720.12.0.? |
$[ ]$ |
$1$ |
| 6450.k1 |
6450o3 |
6450.k |
6450o |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{3} \cdot 3 \cdot 5^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$5160$ |
$48$ |
$0$ |
$6.477355034$ |
$4$ |
$2$ |
$2$ |
$30720$ |
$1.297796$ |
$18440127492397057/1032$ |
$1.01875$ |
$5.37059$ |
$[1, 0, 1, -137601, -19657652]$ |
\(y^2+xy+y=x^3-137601x-19657652\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 40.24.0-8.m.1.2, 1032.24.0.?, $\ldots$ |
$[(436, 1592)]$ |
$1$ |
| 6450.k2 |
6450o2 |
6450.k |
6450o |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$5160$ |
$48$ |
$0$ |
$3.238677517$ |
$1$ |
|
$6$ |
$15360$ |
$0.951222$ |
$4502751117697/1065024$ |
$1.04479$ |
$4.42237$ |
$[1, 0, 1, -8601, -307652]$ |
\(y^2+xy+y=x^3-8601x-307652\) |
2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.2, 516.12.0.?, $\ldots$ |
$[(236, 3171)]$ |
$1$ |
| 6450.k3 |
6450o4 |
6450.k |
6450o |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{6} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$5160$ |
$48$ |
$0$ |
$1.619338758$ |
$1$ |
|
$4$ |
$30720$ |
$1.297796$ |
$-3107661785857/2215383048$ |
$0.98806$ |
$4.47162$ |
$[1, 0, 1, -7601, -381652]$ |
\(y^2+xy+y=x^3-7601x-381652\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 20.12.0-4.c.1.1, 40.24.0-8.d.1.1, $\ldots$ |
$[(138, 1027)]$ |
$1$ |
| 6450.k4 |
6450o1 |
6450.k |
6450o |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{12} \cdot 3 \cdot 5^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$5160$ |
$48$ |
$0$ |
$1.619338758$ |
$1$ |
|
$3$ |
$7680$ |
$0.604649$ |
$1532808577/528384$ |
$0.93069$ |
$3.51204$ |
$[1, 0, 1, -601, -3652]$ |
\(y^2+xy+y=x^3-601x-3652\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 20.12.0-4.c.1.2, 40.24.0-8.m.1.1, $\ldots$ |
$[(-18, 46)]$ |
$1$ |
| 6450.l1 |
6450p1 |
6450.l |
6450p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{8} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$0.160730030$ |
$1$ |
|
$8$ |
$14400$ |
$1.093252$ |
$-75988526665/3566592$ |
$0.91245$ |
$4.33288$ |
$[1, 0, 1, -6451, 206798]$ |
\(y^2+xy+y=x^3-6451x+206798\) |
86.2.0.? |
$[(127, 1136)]$ |
$1$ |
| 6450.m1 |
6450m2 |
6450.m |
6450m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2 \cdot 3^{2} \cdot 5^{9} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$0.856778246$ |
$1$ |
|
$4$ |
$13824$ |
$1.208735$ |
$263732349218689/4160250$ |
$0.95326$ |
$4.88639$ |
$[1, 0, 1, -33401, 2346698]$ |
\(y^2+xy+y=x^3-33401x+2346698\) |
2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? |
$[(72, 526)]$ |
$1$ |
| 6450.m2 |
6450m1 |
6450.m |
6450m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{2} \cdot 3 \cdot 5^{12} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1.713556493$ |
$1$ |
|
$3$ |
$6912$ |
$0.862160$ |
$70393838689/8062500$ |
$0.89632$ |
$3.94832$ |
$[1, 0, 1, -2151, 34198]$ |
\(y^2+xy+y=x^3-2151x+34198\) |
2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? |
$[(37, 56)]$ |
$1$ |
| 6450.n1 |
6450s1 |
6450.n |
6450s |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2 \cdot 3^{3} \cdot 5^{8} \cdot 43 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1032$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$3600$ |
$0.414335$ |
$-2282665/2322$ |
$0.80973$ |
$3.25254$ |
$[1, 0, 1, -201, 1798]$ |
\(y^2+xy+y=x^3-201x+1798\) |
3.8.0-3.a.1.2, 1032.16.0.? |
$[ ]$ |
$1$ |
| 6450.n2 |
6450s2 |
6450.n |
6450s |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{3} \cdot 3 \cdot 5^{8} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1032$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10800$ |
$0.963641$ |
$1329238535/1908168$ |
$0.90084$ |
$3.90749$ |
$[1, 0, 1, 1674, -31952]$ |
\(y^2+xy+y=x^3+1674x-31952\) |
3.8.0-3.a.1.1, 1032.16.0.? |
$[ ]$ |
$1$ |
| 6450.o1 |
6450r1 |
6450.o |
6450r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33600$ |
$1.596159$ |
$-7964053973/811597824$ |
$1.00109$ |
$4.84047$ |
$[1, 0, 1, -5201, 1920548]$ |
\(y^2+xy+y=x^3-5201x+1920548\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 6450.p1 |
6450l1 |
6450.p |
6450l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{9} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$0.260402041$ |
$1$ |
|
$6$ |
$11520$ |
$0.867975$ |
$-10091699281/13932000$ |
$0.89938$ |
$3.86591$ |
$[1, 0, 1, -1126, 26648]$ |
\(y^2+xy+y=x^3-1126x+26648\) |
1720.2.0.? |
$[(-8, 191)]$ |
$1$ |
| 6450.q1 |
6450k1 |
6450.q |
6450k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{19} \cdot 5^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.232227966$ |
$1$ |
|
$8$ |
$82080$ |
$2.091145$ |
$-9500554530751882177/199908972324$ |
$1.04122$ |
$6.08248$ |
$[1, 0, 1, -1103101, 445850348]$ |
\(y^2+xy+y=x^3-1103101x+445850348\) |
516.2.0.? |
$[(601, -58)]$ |
$1$ |
| 6450.r1 |
6450q1 |
6450.r |
6450q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{23} \cdot 3^{11} \cdot 5^{4} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1032$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60720$ |
$1.871967$ |
$56935209711531575/63898719879168$ |
$1.02707$ |
$5.13216$ |
$[1, 0, 1, 68524, 6697298]$ |
\(y^2+xy+y=x^3+68524x+6697298\) |
1032.2.0.? |
$[ ]$ |
$1$ |
| 6450.s1 |
6450n2 |
6450.s |
6450n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{12} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$3.601503627$ |
$1$ |
|
$2$ |
$241920$ |
$2.356709$ |
$503835593418244309249/898614000000$ |
$1.01669$ |
$6.53517$ |
$[1, 0, 1, -4144401, -3247777052]$ |
\(y^2+xy+y=x^3-4144401x-3247777052\) |
2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? |
$[(6482, 488946)]$ |
$1$ |
| 6450.s2 |
6450n1 |
6450.s |
6450n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{9} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1.800751813$ |
$1$ |
|
$5$ |
$120960$ |
$2.010136$ |
$-119305480789133569/5200091136000$ |
$0.98567$ |
$5.59173$ |
$[1, 0, 1, -256401, -51841052]$ |
\(y^2+xy+y=x^3-256401x-51841052\) |
2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? |
$[(722, 11451)]$ |
$1$ |
| 6450.t1 |
6450bd3 |
6450.t |
6450bd |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$1.558052398$ |
$1$ |
|
$0$ |
$18432$ |
$1.304209$ |
$65202655558249/512820150$ |
$0.94492$ |
$4.72708$ |
$[1, 1, 1, -20963, 1151531]$ |
\(y^2+xy+y=x^3+x^2-20963x+1151531\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0-4.c.1.2, 60.12.0-4.c.1.1, $\ldots$ |
$[(-505/2, 11251/2)]$ |
$1$ |
| 6450.t2 |
6450bd2 |
6450.t |
6450bd |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{10} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5160$ |
$48$ |
$0$ |
$3.116104796$ |
$1$ |
|
$4$ |
$9216$ |
$0.957635$ |
$76711450249/41602500$ |
$0.93993$ |
$3.95812$ |
$[1, 1, 1, -2213, -10969]$ |
\(y^2+xy+y=x^3+x^2-2213x-10969\) |
2.6.0.a.1, 24.12.0.b.1, 40.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, $\ldots$ |
$[(339, 6022)]$ |
$1$ |
| 6450.t3 |
6450bd1 |
6450.t |
6450bd |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{4} \cdot 3 \cdot 5^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$1.558052398$ |
$1$ |
|
$3$ |
$4608$ |
$0.611061$ |
$35578826569/51600$ |
$0.88645$ |
$3.87053$ |
$[1, 1, 1, -1713, -27969]$ |
\(y^2+xy+y=x^3+x^2-1713x-27969\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0-4.c.1.4, 60.12.0-4.c.1.2, $\ldots$ |
$[(65, 342)]$ |
$1$ |
| 6450.t4 |
6450bd4 |
6450.t |
6450bd |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2 \cdot 3^{4} \cdot 5^{14} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$6.232209593$ |
$1$ |
|
$0$ |
$18432$ |
$1.304209$ |
$4403686064471/2721093750$ |
$0.97012$ |
$4.41984$ |
$[1, 1, 1, 8537, -75469]$ |
\(y^2+xy+y=x^3+x^2+8537x-75469\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[(1331/2, 49101/2)]$ |
$1$ |
| 6450.u1 |
6450z2 |
6450.u |
6450z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5376$ |
$0.579872$ |
$2305199161/277350$ |
$0.86195$ |
$3.55856$ |
$[1, 1, 1, -688, -6469]$ |
\(y^2+xy+y=x^3+x^2-688x-6469\) |
2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? |
$[ ]$ |
$1$ |
| 6450.u2 |
6450z1 |
6450.u |
6450z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2688$ |
$0.233299$ |
$1685159/7740$ |
$0.81723$ |
$2.95615$ |
$[1, 1, 1, 62, -469]$ |
\(y^2+xy+y=x^3+x^2+62x-469\) |
2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? |
$[ ]$ |
$1$ |
| 6450.v1 |
6450w4 |
6450.v |
6450w |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{7} \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.900494$ |
$15393836938735081/2275690697640$ |
$0.97892$ |
$5.35001$ |
$[1, 1, 1, -129563, -15542719]$ |
\(y^2+xy+y=x^3+x^2-129563x-15542719\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 24.24.0-6.a.1.13, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.v2 |
6450w3 |
6450.v |
6450w |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{6} \cdot 3 \cdot 5^{8} \cdot 43^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$34560$ |
$1.553919$ |
$13679527032530281/381633600$ |
$0.97456$ |
$5.33655$ |
$[1, 1, 1, -124563, -16972719]$ |
\(y^2+xy+y=x^3+x^2-124563x-16972719\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 24.24.0-6.a.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.v3 |
6450w2 |
6450.v |
6450w |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2 \cdot 3^{6} \cdot 5^{9} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$23040$ |
$1.351187$ |
$276670733768281/336980250$ |
$0.95357$ |
$4.89185$ |
$[1, 1, 1, -33938, 2389781]$ |
\(y^2+xy+y=x^3+x^2-33938x+2389781\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 24.24.0-6.a.1.5, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.v4 |
6450w1 |
6450.v |
6450w |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{12} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$5160$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$11520$ |
$1.004614$ |
$137467988281/72562500$ |
$0.93880$ |
$4.02462$ |
$[1, 1, 1, -2688, 14781]$ |
\(y^2+xy+y=x^3+x^2-2688x+14781\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 24.24.0-6.a.1.10, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.w1 |
6450ba1 |
6450.w |
6450ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{11} \cdot 3^{8} \cdot 5^{7} \cdot 43^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$0.260057323$ |
$1$ |
|
$8$ |
$253440$ |
$2.552841$ |
$14382768678616871/9876709319915520$ |
$1.13140$ |
$6.14916$ |
$[1, 1, 1, 126662, -597382969]$ |
\(y^2+xy+y=x^3+x^2+126662x-597382969\) |
1720.2.0.? |
$[(3125, 172587)]$ |
$1$ |
| 6450.x1 |
6450v1 |
6450.x |
6450v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{23} \cdot 3^{11} \cdot 5^{10} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1032$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$303600$ |
$2.676685$ |
$56935209711531575/63898719879168$ |
$1.02707$ |
$6.23303$ |
$[1, 1, 1, 1713112, 837162281]$ |
\(y^2+xy+y=x^3+x^2+1713112x+837162281\) |
1032.2.0.? |
$[ ]$ |
$1$ |
| 6450.y1 |
6450t4 |
6450.y |
6450t |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{5} \cdot 3^{2} \cdot 5^{18} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1720$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$2.237286$ |
$32337636827233520089/3023437500000$ |
$1.00728$ |
$6.22212$ |
$[1, 1, 1, -1659338, 821959031]$ |
\(y^2+xy+y=x^3+x^2-1659338x+821959031\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 40.24.0-40.bb.1.5, 344.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.y2 |
6450t3 |
6450.y |
6450t |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{5} \cdot 3^{8} \cdot 5^{9} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1720$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$2.237286$ |
$1617141066657115609/89723013444000$ |
$1.04542$ |
$5.88062$ |
$[1, 1, 1, -611338, -175192969]$ |
\(y^2+xy+y=x^3+x^2-611338x-175192969\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.v.1.1, 344.24.0.?, 1720.48.0.? |
$[ ]$ |
$1$ |
| 6450.y3 |
6450t2 |
6450.y |
6450t |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{12} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1720$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$92160$ |
$1.890715$ |
$9768641617435609/2396304000000$ |
$1.03356$ |
$5.29816$ |
$[1, 1, 1, -111338, 10807031]$ |
\(y^2+xy+y=x^3+x^2-111338x+10807031\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 40.24.0-40.a.1.4, 344.24.0.?, 860.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6450.y4 |
6450t1 |
6450.y |
6450t |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{20} \cdot 3^{2} \cdot 5^{9} \cdot 43 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1720$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$46080$ |
$1.544140$ |
$32740359775271/50724864000$ |
$0.96254$ |
$4.70750$ |
$[1, 1, 1, 16662, 1079031]$ |
\(y^2+xy+y=x^3+x^2+16662x+1079031\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.bb.1.2, 344.24.0.?, 430.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |