Show commands for:
SageMath
sage: E = EllipticCurve("bd1")
sage: E.isogeny_class()
Elliptic curves in class 6450bd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
6450.t3 | 6450bd1 | [1, 1, 1, -1713, -27969] | [2] | 4608 | \(\Gamma_0(N)\)-optimal |
6450.t2 | 6450bd2 | [1, 1, 1, -2213, -10969] | [2, 2] | 9216 | |
6450.t1 | 6450bd3 | [1, 1, 1, -20963, 1151531] | [2] | 18432 | |
6450.t4 | 6450bd4 | [1, 1, 1, 8537, -75469] | [2] | 18432 |
Rank
sage: E.rank()
The elliptic curves in class 6450bd have rank \(1\).
Complex multiplication
The elliptic curves in class 6450bd do not have complex multiplication.Modular form 6450.2.a.bd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.