Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-424208x-15646412\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-424208xz^2-15646412z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-34360875x-11303151750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-212, 8050)$ | $0.95796294163612693666859758296$ | $\infty$ |
| $(-37, 0)$ | $0$ | $2$ |
Integral points
\((-212,\pm 8050)\), \( \left(-37, 0\right) \), \((747,\pm 9212)\), \((2364,\pm 110446)\)
Invariants
| Conductor: | $N$ | = | \( 64400 \) | = | $2^{4} \cdot 5^{2} \cdot 7 \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $4781741015072000000$ | = | $2^{11} \cdot 5^{6} \cdot 7^{10} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{263822189935250}{149429406721} \) | = | $2 \cdot 5^{3} \cdot 7^{-10} \cdot 23^{-2} \cdot 10181^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2742315394664977726886038361$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.83412766773616438508909472482$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0147063354240857$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.559571989045356$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.95796294163612693666859758296$ |
|
| Real period: | $\Omega$ | ≈ | $0.20180815001568662995869253089$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 80 $ = $ 2\cdot2\cdot( 2 \cdot 5 )\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.8664945807034392086768666916 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.866494581 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.201808 \cdot 0.957963 \cdot 80}{2^2} \\ & \approx 3.866494581\end{aligned}$$
Modular invariants
Modular form 64400.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1105920 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
| $23$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 56.12.0.k.1, level \( 56 = 2^{3} \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 17 & 4 \\ 34 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 27 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 9 & 50 \\ 48 & 7 \end{array}\right),\left(\begin{array}{rr} 53 & 4 \\ 52 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[56])$ is a degree-$258048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 25 = 5^{2} \) |
| $5$ | additive | $14$ | \( 368 = 2^{4} \cdot 23 \) |
| $7$ | split multiplicative | $8$ | \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 64400v
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1288f2, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.9800.2 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.6146560000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | split | ss | ss | ord | ord | split | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | - | 2 | 1,1 | 1,3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.