Properties

Label 64400.z
Number of curves $1$
Conductor $64400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("z1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.z1 64400y1 \([0, -1, 0, -86833, -24490963]\) \(-144814859264/435654247\) \(-217827123500000000\) \([]\) \(519680\) \(2.0137\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 64400.z do not have complex multiplication.

Modular form 64400.2.a.z

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2q^{9} + 3q^{11} + 3q^{13} + 3q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display