Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3-x^2-798597497480x+274688417034903147\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3-x^2z-798597497480xz^2+274688417034903147z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-12777559959675x+17580045912673841750\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(2063771/4, -2063775/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 64350 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $2160569669975919210937500000$ | = | $2^{5} \cdot 3^{16} \cdot 5^{12} \cdot 11^{3} \cdot 13^{6} $ |  | 
| j-invariant: | $j$ | = | \( \frac{4944928228995290413834018379264689}{189679641808585500000} \) | = | $2^{-5} \cdot 3^{-10} \cdot 5^{-6} \cdot 7^{3} \cdot 11^{-3} \cdot 13^{-6} \cdot 53^{3} \cdot 1607^{3} \cdot 285757^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.1851470186374956554040947616$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.8311219180863906224060924765$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0625410991773636$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $8.474637848134682$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.024830241685134192921234117572$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 240 $ = $ 5\cdot2^{2}\cdot2\cdot3\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $5.9592580044322063010961882173 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |  | 
BSD formula
$$\begin{aligned} 5.959258004 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.024830 \cdot 1.000000 \cdot 240}{2^2} \\ & \approx 5.959258004\end{aligned}$$
Modular invariants
Modular form 64350.2.a.ff
For more coefficients, see the Downloads section to the right.
| Modular degree: | 464486400 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 | 
| $3$ | $4$ | $I_{10}^{*}$ | additive | -1 | 2 | 16 | 10 | 
| $5$ | $2$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 | 
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 | 
| $13$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 7866 & 1585 \\ 16445 & 13586 \end{array}\right),\left(\begin{array}{rr} 2506 & 3435 \\ 15885 & 6856 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 17110 & 17151 \end{array}\right),\left(\begin{array}{rr} 5719 & 3420 \\ 7430 & 3359 \end{array}\right),\left(\begin{array}{rr} 6863 & 0 \\ 0 & 17159 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 10306 & 3435 \\ 11985 & 6856 \end{array}\right),\left(\begin{array}{rr} 17149 & 12 \\ 17148 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2641 & 13740 \\ 5550 & 13801 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$127529385984000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) | 
| $3$ | additive | $8$ | \( 50 = 2 \cdot 5^{2} \) | 
| $5$ | additive | $18$ | \( 1287 = 3^{2} \cdot 11 \cdot 13 \) | 
| $11$ | split multiplicative | $12$ | \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 64350ej
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 4290y4, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/6\Z\) | not in database | 
| $4$ | 4.0.13384800.4 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{5}, \sqrt{22})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.0.354294000.4 | \(\Z/6\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.6.117614298205846707699354426686032314451945312500000000.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 11 | 13 | 
|---|---|---|---|---|---|
| Reduction type | split | add | add | split | nonsplit | 
| $\lambda$-invariant(s) | 4 | - | - | 1 | 0 | 
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
