Show commands: SageMath
Rank
The elliptic curves in class 64350ej have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 64350ej do not have complex multiplication.Modular form 64350.2.a.ej
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 64350ej
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 64350.ff4 | 64350ej1 | \([1, -1, 1, 198546520, 19955525943147]\) | \(75991146714893572533071/15147028085515223040000\) | \(-172534116786571837440000000000\) | \([2]\) | \(77414400\) | \(4.2893\) | \(\Gamma_0(N)\)-optimal |
| 64350.ff3 | 64350ej2 | \([1, -1, 1, -9939053480, 370392082743147]\) | \(9532597152396244075685450929/313550122650789880627200\) | \(3571531865819153484019200000000\) | \([2]\) | \(154828800\) | \(4.6358\) | |
| 64350.ff2 | 64350ej3 | \([1, -1, 1, -49909997480, 4292439534903147]\) | \(-1207087636168285491836819264689/236446260657750000000000\) | \(-2693270687804683593750000000000\) | \([2]\) | \(232243200\) | \(4.8386\) | |
| 64350.ff1 | 64350ej4 | \([1, -1, 1, -798597497480, 274688417034903147]\) | \(4944928228995290413834018379264689/189679641808585500000\) | \(2160569669975919210937500000\) | \([2]\) | \(464486400\) | \(5.1852\) |