Show commands: SageMath
Rank
The elliptic curves in class 64350dj have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 64350dj do not have complex multiplication.Modular form 64350.2.a.dj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 64350dj
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
64350.dr5 | 64350dj1 | \([1, -1, 1, -639005, -85527003]\) | \(2533309721804161/1187575234560\) | \(13527224156160000000\) | \([2]\) | \(1474560\) | \(2.3653\) | \(\Gamma_0(N)\)-optimal |
64350.dr4 | 64350dj2 | \([1, -1, 1, -5247005, 4568552997]\) | \(1402524686897642881/20523074457600\) | \(233770644993600000000\) | \([2, 2]\) | \(2949120\) | \(2.7118\) | |
64350.dr6 | 64350dj3 | \([1, -1, 1, -567005, 12421592997]\) | \(-1769848555063681/5850659851882560\) | \(-66642672375349785000000\) | \([2]\) | \(5898240\) | \(3.0584\) | |
64350.dr2 | 64350dj4 | \([1, -1, 1, -83655005, 294521336997]\) | \(5683972151443376419201/1244117160000\) | \(14171272025625000000\) | \([2, 2]\) | \(5898240\) | \(3.0584\) | |
64350.dr3 | 64350dj5 | \([1, -1, 1, -83358005, 296716166997]\) | \(-5623647484692626737921/84122230603125000\) | \(-958204782963720703125000\) | \([2]\) | \(11796480\) | \(3.4050\) | |
64350.dr1 | 64350dj6 | \([1, -1, 1, -1338480005, 18848363786997]\) | \(23281546263261052473907201/1115400\) | \(12705103125000\) | \([2]\) | \(11796480\) | \(3.4050\) |