Properties

Label 64350.ci
Number of curves $4$
Conductor $64350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 64350.ci have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 64350.ci do not have complex multiplication.

Modular form 64350.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} + q^{11} - q^{13} - 4 q^{14} + q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 64350.ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64350.ci1 64350bn4 \([1, -1, 0, -14664492, 21616094416]\) \(30618029936661765625/3678951124992\) \(41905552658112000000\) \([2]\) \(3981312\) \(2.7898\)  
64350.ci2 64350bn3 \([1, -1, 0, -840492, 396254416]\) \(-5764706497797625/2612665516032\) \(-29759893143552000000\) \([2]\) \(1990656\) \(2.4433\)  
64350.ci3 64350bn2 \([1, -1, 0, -405117, -56444459]\) \(645532578015625/252306960048\) \(2873933966796750000\) \([2]\) \(1327104\) \(2.2405\)  
64350.ci4 64350bn1 \([1, -1, 0, 80883, -6386459]\) \(5137417856375/4510142208\) \(-51373338588000000\) \([2]\) \(663552\) \(1.8940\) \(\Gamma_0(N)\)-optimal