Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-2625x+38817\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-2625xz^2+38817z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-212652x+27659664\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-3, 216)$ | $0.81192810558147499301590346712$ | $\infty$ |
$(7, 144)$ | $3.2069591781703986418595834407$ | $\infty$ |
$(-57, 0)$ | $0$ | $2$ |
Integral points
\( \left(-57, 0\right) \), \((-3,\pm 216)\), \((7,\pm 144)\), \((43,\pm 60)\), \((77,\pm 536)\), \((1293,\pm 46440)\)
Invariants
Conductor: | $N$ | = | \( 64320 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 67$ |
|
Discriminant: | $\Delta$ | = | $536163287040$ | = | $2^{15} \cdot 3^{6} \cdot 5 \cdot 67^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{61069889672}{16362405} \) | = | $2^{3} \cdot 3^{-6} \cdot 5^{-1} \cdot 11^{3} \cdot 67^{-2} \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.95889432732342802596393804508$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.092460351623496389192397893257$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8666175203603044$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1822329251330403$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6031722353773703461405887787$ |
|
Real period: | $\Omega$ | ≈ | $0.86390344484374180786940553639$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.9955578466563765190682835619 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.995557847 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.863903 \cdot 2.603172 \cdot 16}{2^2} \\ & \approx 8.995557847\end{aligned}$$
Modular invariants
Modular form 64320.2.a.x
For more coefficients, see the Downloads section to the right.
Modular degree: | 67584 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 6 | 15 | 0 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$67$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 6434 & 1 \\ 4823 & 0 \end{array}\right),\left(\begin{array}{rr} 5161 & 4 \\ 2282 & 9 \end{array}\right),\left(\begin{array}{rr} 2681 & 4 \\ 5362 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 4019 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3017 & 5026 \\ 5024 & 3015 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 8037 & 4 \\ 8036 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[8040])$ is a degree-$58528046776320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 5 \) |
$3$ | nonsplit multiplicative | $4$ | \( 21440 = 2^{6} \cdot 5 \cdot 67 \) |
$5$ | split multiplicative | $6$ | \( 12864 = 2^{6} \cdot 3 \cdot 67 \) |
$67$ | split multiplicative | $68$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 64320ce
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 32160o2, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.6464160.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 67 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | split | ord | ss | ord | ss | ord | ord | ss | ss | ord | ord | ss | ord | split |
$\lambda$-invariant(s) | - | 4 | 3 | 2 | 2,2 | 2 | 2,2 | 2 | 2 | 2,2 | 2,2 | 2 | 2 | 2,2 | 2 | 3 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.