Properties

Label 63870p
Number of curves 2
Conductor 63870
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("63870.o1")
sage: E.isogeny_class()

Elliptic curves in class 63870p

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
63870.o2 63870p1 [1, 0, 0, -35874060, 82698195600] 7 4346496 \(\Gamma_0(N)\)-optimal
63870.o1 63870p2 [1, 0, 0, -1345660860, -18997123438560] 1 30425472  

Rank

sage: E.rank()

The elliptic curves in class 63870p have rank \(1\).

Modular form 63870.2.a.o

sage: E.q_eigenform(10)
\( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 2q^{11} + q^{12} + q^{14} + q^{15} + q^{16} - 3q^{17} + q^{18} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.