Show commands: SageMath
Rank
The elliptic curves in class 6370b have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6370b do not have complex multiplication.Modular form 6370.2.a.b
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6370b
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6370.b2 | 6370b1 | \([1, 1, 0, -28343928, -62991234368]\) | \(-21405018343206000779641/2177246093750000000\) | \(-256150825683593750000000\) | \([]\) | \(1016064\) | \(3.2315\) | \(\Gamma_0(N)\)-optimal |
| 6370.b3 | 6370b2 | \([1, 1, 0, 174546697, 57840468757]\) | \(4998853083179567995470359/2905108466204672000000\) | \(-341783105940513456128000000\) | \([]\) | \(3048192\) | \(3.7808\) | |
| 6370.b1 | 6370b3 | \([1, 1, 0, -2474656678, 50249707696532]\) | \(-14245586655234650511684983641/1028175397808386133196800\) | \(-120963807376758820184470323200\) | \([]\) | \(9144576\) | \(4.3301\) |