Properties

Label 6370b
Number of curves $3$
Conductor $6370$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6370b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6370b do not have complex multiplication.

Modular form 6370.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} - 2 q^{9} + q^{10} - 3 q^{11} - q^{12} - q^{13} + q^{15} + q^{16} - 6 q^{17} + 2 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6370b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6370.b2 6370b1 \([1, 1, 0, -28343928, -62991234368]\) \(-21405018343206000779641/2177246093750000000\) \(-256150825683593750000000\) \([]\) \(1016064\) \(3.2315\) \(\Gamma_0(N)\)-optimal
6370.b3 6370b2 \([1, 1, 0, 174546697, 57840468757]\) \(4998853083179567995470359/2905108466204672000000\) \(-341783105940513456128000000\) \([]\) \(3048192\) \(3.7808\)  
6370.b1 6370b3 \([1, 1, 0, -2474656678, 50249707696532]\) \(-14245586655234650511684983641/1028175397808386133196800\) \(-120963807376758820184470323200\) \([]\) \(9144576\) \(4.3301\)