Properties

Label 63426.e
Number of curves $4$
Conductor $63426$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 63426.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 63426.e do not have complex multiplication.

Modular form 63426.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{11} - q^{12} + 4 q^{13} - 2 q^{14} + q^{16} + 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 63426.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
63426.e1 63426e3 \([1, 1, 0, -77380, 8221072]\) \(57736239625/255552\) \(226803340686912\) \([2]\) \(345600\) \(1.6069\)  
63426.e2 63426e4 \([1, 1, 0, -38940, 16439544]\) \(-7357983625/127552392\) \(-113203217420354952\) \([2]\) \(691200\) \(1.9535\)  
63426.e3 63426e1 \([1, 1, 0, -5305, -142511]\) \(18609625/1188\) \(1054354373028\) \([2]\) \(115200\) \(1.0576\) \(\Gamma_0(N)\)-optimal
63426.e4 63426e2 \([1, 1, 0, 4305, -590337]\) \(9938375/176418\) \(-156571624394658\) \([2]\) \(230400\) \(1.4042\)