Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, 0, 0, -3756, -54704]); // or

magma: E := EllipticCurve("6336ck3");

sage: E = EllipticCurve([0, 0, 0, -3756, -54704]) # or

sage: E = EllipticCurve("6336ck3")

gp: E = ellinit([0, 0, 0, -3756, -54704]) \\ or

gp: E = ellinit("6336ck3")

$$y^2 = x^{3} - 3756 x - 54704$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-46, 144\right)$$ $$\left(-30, 176\right)$$ $$\hat{h}(P)$$ ≈ 1.05677790502 0.554667417574

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(-52, 0\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-52, 0\right)$$, $$(-46,\pm 144)$$, $$(-36,\pm 184)$$, $$(-30,\pm 176)$$, $$(-19,\pm 99)$$, $$(-16,\pm 36)$$, $$(69,\pm 121)$$, $$(80,\pm 396)$$, $$(98,\pm 720)$$, $$(146,\pm 1584)$$, $$(173,\pm 2115)$$, $$(476,\pm 10296)$$, $$(674,\pm 17424)$$, $$(2060,\pm 93456)$$, $$(3666,\pm 221936)$$, $$(18450,\pm 2506064)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$6336$$ = $$2^{6} \cdot 3^{2} \cdot 11$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$2098454003712$$ = $$2^{16} \cdot 3^{7} \cdot 11^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{122657188}{43923}$$ = $$2^{2} \cdot 3^{-1} \cdot 11^{-4} \cdot 313^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.44336400231$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.627956042573$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$64$$  = $$2^{2}\cdot2^{2}\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form6336.2.a.o

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - 2q^{5} - 4q^{7} + q^{11} - 6q^{13} - 6q^{17} - 8q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 12288 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L^{(2)}(E,1)/2!$$ ≈ $$4.45460966896$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_6^{*}$$ Additive -1 6 16 0
$$3$$ $$4$$ $$I_1^{*}$$ Additive -1 2 7 1
$$11$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13g.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ordinary ordinary split ordinary ordinary ordinary ss ordinary ss ordinary ordinary ordinary ss - - 2 2 3 2 2 2 2,2 2 2,2 4 2 2 2,2 - - 0 0 0 0 0 0 0,0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 6336ck consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-2})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{-6})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{3})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 $$\Q(\sqrt{-2}, \sqrt{3})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.