Properties

Label 63270.t
Number of curves $4$
Conductor $63270$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 63270.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(19\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 63270.t do not have complex multiplication.

Modular form 63270.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + 2 q^{13} + q^{16} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 63270.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
63270.t1 63270o4 \([1, -1, 0, -1958904, -1047170592]\) \(1140343700217211191169/9496149787277280\) \(6922693194925137120\) \([2]\) \(1331200\) \(2.4410\)  
63270.t2 63270o2 \([1, -1, 0, -209304, 9937728]\) \(1391008986004445569/747073209369600\) \(544616369630438400\) \([2, 2]\) \(665600\) \(2.0944\)  
63270.t3 63270o1 \([1, -1, 0, -163224, 25392960]\) \(659704930833045889/895635947520\) \(652918605742080\) \([2]\) \(332800\) \(1.7478\) \(\Gamma_0(N)\)-optimal
63270.t4 63270o3 \([1, -1, 0, 803016, 77358240]\) \(78554030949152410751/49024188678060000\) \(-35738633546305740000\) \([2]\) \(1331200\) \(2.4410\)