Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-9630x-210924\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-9630xz^2-210924z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-154083x-13653218\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-84, 42)$ | $0$ | $2$ |
$(108, -54)$ | $0$ | $2$ |
Integral points
\( \left(-84, 42\right) \), \( \left(108, -54\right) \)
Invariants
Conductor: | $N$ | = | \( 630 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $37498476960000$ | = | $2^{8} \cdot 3^{14} \cdot 5^{4} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{135487869158881}{51438240000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3040147903896999285248126837$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75470864605564508282719006524$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0190986885579905$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.070939794816682$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.49756378101092099945760431340$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.99512756202184199891520862680 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.995127562 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.497564 \cdot 1.000000 \cdot 32}{4^2} \\ & \approx 0.995127562\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2048 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 16.96.0.48 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 15 & 16 \\ 74 & 289 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1353 & 16 \\ 1076 & 121 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 320 & 617 \end{array}\right),\left(\begin{array}{rr} 559 & 1672 \\ 0 & 1679 \end{array}\right),\left(\begin{array}{rr} 241 & 16 \\ 1446 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1665 & 16 \\ 1664 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[1680])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
$5$ | nonsplit multiplicative | $6$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 630c
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 210e2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | 2.0.3.1-14700.2-g4 |
$4$ | \(\Q(\sqrt{3}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.49787136.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.497871360000.17 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.207360000.1 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.2.4253299470000.6 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.5951500145509072896.2 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | nonsplit |
$\lambda$-invariant(s) | 3 | - | 0 | 0 |
$\mu$-invariant(s) | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.