Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+x^2-3943x-93609\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+x^2z-3943xz^2-93609z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5110560x-4306084848\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-341/9, 1423/27)$ | $3.1595084900580964178337170692$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 6253 \) | = | $13^{2} \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $244492356277$ | = | $13^{6} \cdot 37^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{1404928000}{50653} \) | = | $2^{15} \cdot 5^{3} \cdot 7^{3} \cdot 37^{-3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.95525009392041687733590610785$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.32722458481035149069083761293$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9727427413985318$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.170428186614647$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.1595084900580964178337170692$ |
|
| Real period: | $\Omega$ | ≈ | $0.60380314117937489443958416701$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.8154423017599647829079755773 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.815442302 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.603803 \cdot 3.159508 \cdot 2}{1^2} \\ & \approx 3.815442302\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4320 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $37$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Cs | 9.36.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 25974 = 2 \cdot 3^{3} \cdot 13 \cdot 37 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 19979 & 0 \\ 0 & 25973 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3797 & 6838 \\ 24960 & 13027 \end{array}\right),\left(\begin{array}{rr} 19 & 54 \\ 18558 & 4897 \end{array}\right),\left(\begin{array}{rr} 352 & 20007 \\ 14703 & 25624 \end{array}\right),\left(\begin{array}{rr} 25921 & 54 \\ 25920 & 55 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 21684 & 22981 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[25974])$ is a degree-$69627648190464$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/25974\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | good | $2$ | \( 169 = 13^{2} \) |
| $13$ | additive | $86$ | \( 37 \) |
| $37$ | nonsplit multiplicative | $38$ | \( 169 = 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 6253a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 37b1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/3\Z\) | 2.2.13.1-1369.1-a1 |
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.3.148.1 | \(\Z/2\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $6$ | 6.6.810448.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.6.48123088.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.1299323376.3 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.50890695695027995180757874154677.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.532334651716384400563709192881346474380431.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ss | ord | ord | add | ord | ord | ord | ord | ord | nonsplit | ord | ord | ord |
| $\lambda$-invariant(s) | 2,7 | 3 | 1,1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | 1 | 0,0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.