Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-117520x+15226900\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-117520xz^2+15226900z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-9519147x+11071852686\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(52, 3042)$ | $0$ | $4$ |
Integral points
\((52,\pm 3042)\), \( \left(221, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 6240 \) | = | $2^{5} \cdot 3 \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $4228748057664000$ | = | $2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{350584567631475848}{8259273550125} \) | = | $2^{3} \cdot 3^{-4} \cdot 5^{-3} \cdot 11^{3} \cdot 13^{-8} \cdot 32051^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7837915225525824771364455964$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2639311371326234950735215053$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0116459533211948$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.336779352188818$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.43720368430856236865239353402$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2\cdot2\cdot3\cdot2^{3} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.6232221058513742119143612041 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.623222106 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.437204 \cdot 1.000000 \cdot 96}{4^2} \\ & \approx 2.623222106\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 49152 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | -1 | 5 | 9 | 0 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.47 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1040 = 2^{4} \cdot 5 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 15 & 166 \\ 754 & 995 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1025 & 16 \\ 1024 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 268 & 269 \\ 543 & 546 \end{array}\right),\left(\begin{array}{rr} 787 & 270 \\ 104 & 613 \end{array}\right),\left(\begin{array}{rr} 561 & 16 \\ 328 & 129 \end{array}\right),\left(\begin{array}{rr} 638 & 3 \\ 301 & 20 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1040])$ is a degree-$1610219520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 5 \) |
$3$ | nonsplit multiplicative | $4$ | \( 416 = 2^{5} \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 6240z
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.2560.2 | \(\Z/8\Z\) | not in database |
$4$ | 4.4.256000.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.262144000000.9 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2621440000.10 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.331579094925312.30 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 13 |
---|---|---|---|---|
Reduction type | add | nonsplit | split | split |
$\lambda$-invariant(s) | - | 2 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.