Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-304x+1892\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-304xz^2+1892z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-24651x+1453194\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(8, 6)$ | $0.55510214704754838132588478465$ | $\infty$ |
$(2, 36)$ | $0$ | $4$ |
Integral points
\((-16,\pm 54)\), \((-14,\pm 60)\), \((2,\pm 36)\), \((8,\pm 6)\), \( \left(11, 0\right) \), \((14,\pm 24)\), \((38,\pm 216)\), \((47,\pm 306)\), \((3278,\pm 187704)\)
Invariants
Conductor: | $N$ | = | \( 624 \) | = | $2^{4} \cdot 3 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $87340032$ | = | $2^{10} \cdot 3^{8} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{3044193988}{85293} \) | = | $2^{2} \cdot 3^{-8} \cdot 11^{3} \cdot 13^{-1} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.30283346525585848739910262792$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27478918521076260378192413996$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9567914796065754$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.46974855495685$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.55510214704754838132588478465$ |
|
Real period: | $\Omega$ | ≈ | $1.9064113549901548599069670592$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{3}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.1165060726217218013358204465 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.116506073 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.906411 \cdot 0.555102 \cdot 32}{4^2} \\ & \approx 2.116506073\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 256 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.47 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 624 = 2^{4} \cdot 3 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 338 & 579 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 319 & 322 \\ 298 & 359 \end{array}\right),\left(\begin{array}{rr} 209 & 16 \\ 424 & 129 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 155 & 462 \\ 544 & 221 \end{array}\right),\left(\begin{array}{rr} 609 & 16 \\ 608 & 17 \end{array}\right),\left(\begin{array}{rr} 536 & 9 \\ 215 & 26 \end{array}\right)$.
The torsion field $K:=\Q(E[624])$ is a degree-$161021952$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/624\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 13 \) |
$3$ | split multiplicative | $4$ | \( 208 = 2^{4} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 48 = 2^{4} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 624.f
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 312.a1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.140608.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | 4.0.832.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.316329754624.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.116985856.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.20723693432832.26 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ord | ord | ss | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 3 | 1 | 1,1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.