Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-13x+4\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-13xz^2+4z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1080x-297\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 2)$ | $1.3314394346472827988718305852$ | $\infty$ |
$(4, 0)$ | $0$ | $2$ |
Integral points
\((0,\pm 2)\), \( \left(4, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 624 \) | = | $2^{4} \cdot 3 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $151632$ | = | $2^{4} \cdot 3^{6} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{16384000}{9477} \) | = | $2^{17} \cdot 3^{-6} \cdot 5^{3} \cdot 13^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.31642126177505297374703906967$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.54747032196170141021944977682$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.4888653961459486$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.0118010642396027$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.3314394346472827988718305852$ |
|
Real period: | $\Omega$ | ≈ | $2.7365561606666087589210801693$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.8217793937192441798117794265 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.821779394 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.736556 \cdot 1.331439 \cdot 2}{2^2} \\ & \approx 1.821779394\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 48 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 106 & 147 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 9 & 62 \\ 70 & 127 \end{array}\right),\left(\begin{array}{rr} 145 & 12 \\ 144 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 46 & 3 \\ 141 & 148 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 2 \\ 108 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$1257984$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 208 = 2^{4} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 48 = 2^{4} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 624.b
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 156.b4, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/6\Z\) | 2.0.4.1-6084.2-b1 |
$4$ | 4.4.7488.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.197413632.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.8.9475854336.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.177935486976.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.56070144.2 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | 16.0.89791815397090000896.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.2817762311376405323255239409664.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ss | ord | ss | split | ord | ord | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 1 | 1,1 | 3 | 1,1 | 2 | 3 | 3 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.