Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-225x+1125\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-225xz^2+1125z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-292275x+56868750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(15, 30)$ | $0.60491997242264912083903665272$ | $\infty$ |
$(5, 10)$ | $0.75156031540478483499815794565$ | $\infty$ |
$(10, -5)$ | $0$ | $2$ |
Integral points
\( \left(-15, 45\right) \), \( \left(-15, -30\right) \), \( \left(-10, 55\right) \), \( \left(-10, -45\right) \), \( \left(-6, 51\right) \), \( \left(-6, -45\right) \), \( \left(5, 10\right) \), \( \left(5, -15\right) \), \( \left(6, 3\right) \), \( \left(6, -9\right) \), \( \left(10, -5\right) \), \( \left(11, 6\right) \), \( \left(11, -17\right) \), \( \left(15, 30\right) \), \( \left(15, -45\right) \), \( \left(19, 55\right) \), \( \left(19, -74\right) \), \( \left(30, 135\right) \), \( \left(30, -165\right) \), \( \left(59, 415\right) \), \( \left(59, -474\right) \), \( \left(110, 1095\right) \), \( \left(110, -1205\right) \), \( \left(330, 5835\right) \), \( \left(330, -6165\right) \), \( \left(615, 14955\right) \), \( \left(615, -15570\right) \)
Invariants
Conductor: | $N$ | = | \( 6150 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 41$ |
|
Discriminant: | $\Delta$ | = | $92250000$ | = | $2^{4} \cdot 3^{2} \cdot 5^{6} \cdot 41 $ |
|
j-invariant: | $j$ | = | \( \frac{81182737}{5904} \) | = | $2^{-4} \cdot 3^{-2} \cdot 41^{-1} \cdot 433^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.27471392682994633381858962367$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.53000502938710385348179004294$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9582556017330255$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.194426668929466$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.42773393426775411835117938665$ |
|
Real period: | $\Omega$ | ≈ | $1.8657556246255502337404519500$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $3.1921879748131105228911649860 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.192187975 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.865756 \cdot 0.427734 \cdot 16}{2^2} \\ & \approx 3.192187975\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 3072 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$41$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.11 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1640 = 2^{3} \cdot 5 \cdot 41 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 1634 & 1635 \end{array}\right),\left(\begin{array}{rr} 131 & 1110 \\ 210 & 371 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 516 & 985 \\ 15 & 6 \end{array}\right),\left(\begin{array}{rr} 983 & 0 \\ 0 & 1639 \end{array}\right),\left(\begin{array}{rr} 1633 & 8 \\ 1632 & 9 \end{array}\right),\left(\begin{array}{rr} 1521 & 1520 \\ 710 & 871 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[1640])$ is a degree-$42319872000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1025 = 5^{2} \cdot 41 \) |
$3$ | nonsplit multiplicative | $4$ | \( 2050 = 2 \cdot 5^{2} \cdot 41 \) |
$5$ | additive | $14$ | \( 246 = 2 \cdot 3 \cdot 41 \) |
$41$ | split multiplicative | $42$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 6150i
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 246e1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{41}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{205}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{41})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.348572160000.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.8.12160266856960000.8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | split | ord | ord |
$\lambda$-invariant(s) | 3 | 2 | - | 2 | 2 | 4 | 2 | 2 | 2,2 | 2 | 2 | 2 | 3 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.