Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2+4505x-253343\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z+4505xz^2-253343z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+5838453x-11907539514\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(775/4, 21763/8)$ | $5.4464342109066471207229684785$ | $\infty$ |
$(163/4, -167/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 61370 \) | = | $2 \cdot 5 \cdot 17 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $-33990649022500$ | = | $-1 \cdot 2^{2} \cdot 5^{4} \cdot 17^{2} \cdot 19^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{214921799}{722500} \) | = | $2^{-2} \cdot 5^{-4} \cdot 17^{-2} \cdot 599^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2795021914291396069620913871$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.19271729815408062304242232884$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9103514678397865$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.485173237470725$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.4464342109066471207229684785$ |
|
Real period: | $\Omega$ | ≈ | $0.33388282428227334688632330619$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $14.547766692840849234777953523 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.547766693 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.333883 \cdot 5.446434 \cdot 32}{2^2} \\ & \approx 14.547766693\end{aligned}$$
Modular invariants
Modular form 61370.2.a.x
For more coefficients, see the Downloads section to the right.
Modular degree: | 193536 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$19$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 12920 = 2^{3} \cdot 5 \cdot 17 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2281 & 6802 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 10 & 27 \end{array}\right),\left(\begin{array}{rr} 6461 & 1368 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3231 & 1368 \\ 11647 & 2737 \end{array}\right),\left(\begin{array}{rr} 12913 & 8 \\ 12912 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10337 & 684 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 3399 & 0 \\ 0 & 12919 \end{array}\right)$.
The torsion field $K:=\Q(E[12920])$ is a degree-$148143026995200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/12920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 361 = 19^{2} \) |
$5$ | split multiplicative | $6$ | \( 12274 = 2 \cdot 17 \cdot 19^{2} \) |
$17$ | split multiplicative | $18$ | \( 3610 = 2 \cdot 5 \cdot 19^{2} \) |
$19$ | additive | $182$ | \( 170 = 2 \cdot 5 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 61370.x
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 170.b2, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.417316.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.9641668864.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2786442301696.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | split | ord | ord | ord | split | add | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | 4 | 1 | 1 | 1 | 4 | - | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.