Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-140362362x-640076749443\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-140362362xz^2-640076749443z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-181909621179x-29862875093149098\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(96860432645901/6998995600, 148632465697734997869/585535971896000)$ | $32.056620107556674266582704967$ | $\infty$ |
| $(-27361/4, 27361/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 61347 \) | = | $3 \cdot 11^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $11005119726978663$ | = | $3^{2} \cdot 11^{7} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{35765103905346817}{1287} \) | = | $3^{-2} \cdot 11^{-1} \cdot 13^{-1} \cdot 329473^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0225179540368684614274731250$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.54109563890691482136975761524$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9895637859915349$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.15846877376569$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $32.056620107556674266582704967$ |
|
| Real period: | $\Omega$ | ≈ | $0.043861844177483374476764697358$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.6242499040577247153941249892 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.624249904 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.043862 \cdot 32.056620 \cdot 16}{2^2} \\ & \approx 5.624249904\end{aligned}$$
Modular invariants
Modular form 61347.2.a.i
For more coefficients, see the Downloads section to the right.
| Modular degree: | 5160960 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.56 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6864 = 2^{4} \cdot 3 \cdot 11 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 4589 & 16 \\ 2032 & 6549 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 1724 & 1845 \end{array}\right),\left(\begin{array}{rr} 4298 & 5159 \\ 2491 & 3318 \end{array}\right),\left(\begin{array}{rr} 6328 & 6863 \\ 4145 & 6854 \end{array}\right),\left(\begin{array}{rr} 6849 & 16 \\ 6848 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 6766 & 6851 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 6860 & 6861 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5600 & 6859 \\ 4413 & 14 \end{array}\right)$.
The torsion field $K:=\Q(E[6864])$ is a degree-$2125489766400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6864\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
| $3$ | split multiplicative | $4$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
| $11$ | additive | $72$ | \( 507 = 3 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 363 = 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 61347z
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 429b4, its twist by $-143$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{143}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-143}) \) | \(\Z/4\Z\) | not in database |
| $4$ | 4.2.6737372928.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{143})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{33}, \sqrt{-39})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-33}, \sqrt{39})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.8670998958336.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | ord | ss | add | add | ord | ord | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 2 | 1 | 1,1 | - | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | 0 | 0 | 0,0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.