Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-18017x-745185\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-18017xz^2-745185z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1459404x-538861680\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1429/4, 49665/8)$ | $5.4314285756067421537126689718$ | $\infty$ |
| $(-47, 0)$ | $0$ | $2$ |
| $(151, 0)$ | $0$ | $2$ |
Integral points
\( \left(-105, 0\right) \), \( \left(-47, 0\right) \), \( \left(151, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 61248 \) | = | $2^{6} \cdot 3 \cdot 11 \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $138288568467456$ | = | $2^{24} \cdot 3^{4} \cdot 11^{2} \cdot 29^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2467489596697}{527529024} \) | = | $2^{-6} \cdot 3^{-4} \cdot 11^{-2} \cdot 29^{-2} \cdot 13513^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4276510805563541152374179047$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.38793030971643615111156972251$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9173545206849743$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7205876930188575$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.4314285756067421537126689718$ |
|
| Real period: | $\Omega$ | ≈ | $0.41831735756376280555758322442$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.0882433981764978443650256543 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.088243398 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.418317 \cdot 5.431429 \cdot 64}{4^2} \\ & \approx 9.088243398\end{aligned}$$
Modular invariants
Modular form 61248.2.a.ch
For more coefficients, see the Downloads section to the right.
| Modular degree: | 147456 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{14}^{*}$ | additive | -1 | 6 | 24 | 6 |
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $29$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2552 = 2^{3} \cdot 11 \cdot 29 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2549 & 4 \\ 2548 & 5 \end{array}\right),\left(\begin{array}{rr} 233 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 635 & 2548 \\ 2544 & 2541 \end{array}\right),\left(\begin{array}{rr} 1275 & 2548 \\ 2550 & 2543 \end{array}\right),\left(\begin{array}{rr} 267 & 2 \\ 2374 & 2551 \end{array}\right)$.
The torsion field $K:=\Q(E[2552])$ is a degree-$288110592000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1 \) |
| $3$ | split multiplicative | $4$ | \( 20416 = 2^{6} \cdot 11 \cdot 29 \) |
| $11$ | split multiplicative | $12$ | \( 5568 = 2^{6} \cdot 3 \cdot 29 \) |
| $29$ | split multiplicative | $30$ | \( 2112 = 2^{6} \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 61248cl
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1914e2, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{58})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-22}, \sqrt{58})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.678645014265856.5 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | ord | ss | split | ord | ord | ord | ord | split | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 1 | 1,1 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.