Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-516450x+142853375\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-516450xz^2+142853375z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-516450x+142853375\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-545, 16200)$ | $2.7045495260917389621389811928$ | $\infty$ |
| $(415, 0)$ | $0$ | $2$ |
Integral points
\((-545,\pm 16200)\), \( \left(415, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 61200 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $1254791250000$ | = | $2^{4} \cdot 3^{10} \cdot 5^{7} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{83587439220736}{6885} \) | = | $2^{11} \cdot 3^{-4} \cdot 5^{-1} \cdot 11^{3} \cdot 17^{-1} \cdot 313^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7650421730610102730241069744$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.17996801232325680355369398217$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0574800557012383$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.634209425369502$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.7045495260917389621389811928$ |
|
| Real period: | $\Omega$ | ≈ | $0.65814464615767509977763735850$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2^{2}\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.1199391634622216765657758131 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.119939163 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.658145 \cdot 2.704550 \cdot 16}{2^2} \\ & \approx 7.119939163\end{aligned}$$
Modular invariants
Modular form 61200.2.a.eb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 294912 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | 1 | 4 | 4 | 0 |
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.15 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 4065 & 16 \\ 4064 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 2736 \\ 348 & 469 \end{array}\right),\left(\begin{array}{rr} 568 & 9 \\ 2823 & 2746 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 2719 & 0 \\ 0 & 4079 \end{array}\right),\left(\begin{array}{rr} 2984 & 4071 \\ 249 & 1334 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 3794 & 915 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 3053 & 2370 \\ 1728 & 3707 \end{array}\right)$.
The torsion field $K:=\Q(E[4080])$ is a degree-$231022264320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \) |
| $3$ | additive | $8$ | \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \) |
| $5$ | additive | $18$ | \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 61200bq
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2040c1, its twist by $60$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{85}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{51}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{15}, \sqrt{51})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.7820572356000000.4 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.59927040000.49 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ss | ss | ord | split | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | - | 1,1 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | - | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.