Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-20703x-1137598\)
|
(homogenize, simplify) |
\(y^2z=x^3-20703xz^2-1137598z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-20703x-1137598\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-79, 70)$ | $2.3219090041484586513440250636$ | $\infty$ |
$(-77, 0)$ | $0$ | $2$ |
$(166, 0)$ | $0$ | $2$ |
Integral points
\( \left(-89, 0\right) \), \((-79,\pm 70)\), \( \left(-77, 0\right) \), \( \left(166, 0\right) \), \((217,\pm 2142)\), \((1381,\pm 51030)\)
Invariants
Conductor: | $N$ | = | \( 6120 \) | = | $2^{3} \cdot 3^{2} \cdot 5 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $8846579462400$ | = | $2^{8} \cdot 3^{14} \cdot 5^{2} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{5258429611216}{47403225} \) | = | $2^{4} \cdot 3^{-8} \cdot 5^{-2} \cdot 17^{-2} \cdot 67^{3} \cdot 103^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3068968071239327404323433685$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.29549254241658102178989933573$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9362103233505246$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.751255509744983$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.3219090041484586513440250636$ |
|
Real period: | $\Omega$ | ≈ | $0.39822405335827216298784388510$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.6985600606442735160734016786 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.698560061 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.398224 \cdot 2.321909 \cdot 64}{4^2} \\ & \approx 3.698560061\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 12288 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.24.0.35 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1027 & 684 \\ 1428 & 1909 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1687 & 6 \\ 594 & 2035 \end{array}\right),\left(\begin{array}{rr} 1021 & 1368 \\ 684 & 1393 \end{array}\right),\left(\begin{array}{rr} 1639 & 6 \\ 1218 & 2035 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2033 & 8 \\ 2032 & 9 \end{array}\right),\left(\begin{array}{rr} 679 & 0 \\ 0 & 2039 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$14438891520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
$5$ | nonsplit multiplicative | $6$ | \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 6120.h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2040.f2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-3}, \sqrt{85})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{85})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\zeta_{12})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1082432160000.10 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2397081600.13 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.9469116535680000.5 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ss | ss | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.