Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-6334950x+5938276500\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-6334950xz^2+5938276500z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8210095875x+277179379818750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1660, -830)$ | $0$ | $2$ |
Integral points
\( \left(1660, -830\right) \)
Invariants
| Conductor: | $N$ | = | \( 61050 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $1023611108256000000000$ | = | $2^{14} \cdot 3^{10} \cdot 5^{9} \cdot 11^{4} \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( \frac{14395387326388219061}{524088887427072} \) | = | $2^{-14} \cdot 3^{-10} \cdot 11^{-4} \cdot 37^{-1} \cdot 2432621^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8011717134652171065841321026$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5940932791396418256335626027$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9730762075547118$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.317723552618552$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.15472414107106845540329853507$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2377931285685476432263882806 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.237793129 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.154724 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.237793129\end{aligned}$$
Modular invariants
Modular form 61050.2.a.m
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3763200 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{14}$ | nonsplit multiplicative | 1 | 1 | 14 | 14 |
| $3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
| $5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1480 = 2^{3} \cdot 5 \cdot 37 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 741 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1297 & 186 \\ 184 & 1295 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 522 & 1 \\ 479 & 0 \end{array}\right),\left(\begin{array}{rr} 1188 & 1 \\ 1183 & 0 \end{array}\right),\left(\begin{array}{rr} 1477 & 4 \\ 1476 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[1480])$ is a degree-$111954493440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 185 = 5 \cdot 37 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 20350 = 2 \cdot 5^{2} \cdot 11 \cdot 37 \) |
| $5$ | additive | $14$ | \( 814 = 2 \cdot 11 \cdot 37 \) |
| $7$ | good | $2$ | \( 30525 = 3 \cdot 5^{2} \cdot 11 \cdot 37 \) |
| $11$ | split multiplicative | $12$ | \( 5550 = 2 \cdot 3 \cdot 5^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 61050s
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 61050cz1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{185}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.296000.2 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.119946304000000.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 11 | 37 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | split | split |
| $\lambda$-invariant(s) | 3 | 0 | - | 1 | 3 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.