Properties

Label 61050.l
Number of curves $1$
Conductor $61050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 61050.l1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61050.l do not have complex multiplication.

Modular form 61050.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} - q^{11} - q^{12} - 2 q^{14} + q^{16} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 61050.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61050.l1 61050c1 \([1, 1, 0, 22800, -576000]\) \(134214193775/92835072\) \(-906592500000000\) \([]\) \(291840\) \(1.5586\) \(\Gamma_0(N)\)-optimal