Properties

Label 61050.bd
Number of curves $1$
Conductor $61050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 61050.bd1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61050.bd do not have complex multiplication.

Modular form 61050.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + q^{11} + q^{12} + 7 q^{13} + q^{16} - 2 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 61050.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61050.bd1 61050bf1 \([1, 0, 1, -2201, -61702]\) \(-3016755625/2439558\) \(-952952343750\) \([]\) \(115200\) \(0.99679\) \(\Gamma_0(N)\)-optimal