Properties

Label 6090h
Number of curves 22
Conductor 60906090
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6090h have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331T1 - T
551+T1 + T
771+T1 + T
29291+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6090h do not have complex multiplication.

Modular form 6090.2.a.h

Copy content sage:E.q_eigenform(10)
 
qq2+q3+q4q5q6q7q8+q9+q10+q12+q14q15+q162q17q18+6q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6090h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6090.g1 6090h1 [1,0,1,3699,86266][1, 0, 1, -3699, 86266] 5595100866606889/63945005595100866606889/6394500 63945006394500 [2][2] 42244224 0.590390.59039 Γ0(N)\Gamma_0(N)-optimal
6090.g2 6090h2 [1,0,1,3669,87742][1, 0, 1, -3669, 87742] 5460050774992969/189303843750-5460050774992969/189303843750 189303843750-189303843750 [2][2] 84488448 0.936960.93696