sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 6090h have
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1+T |
| 3 | 1−T |
| 5 | 1+T |
| 7 | 1+T |
| 29 | 1+T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 11 |
1−4T+11T2 |
1.11.ae
|
| 13 |
1−6T+13T2 |
1.13.ag
|
| 17 |
1−6T+17T2 |
1.17.ag
|
| 19 |
1−4T+19T2 |
1.19.ae
|
| 23 |
1+23T2 |
1.23.a
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 6090h do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 6090h
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 6090.g1 |
6090h1 |
[1,0,1,−3699,86266] |
5595100866606889/6394500 |
6394500 |
[2] |
4224 |
0.59039
|
Γ0(N)-optimal |
| 6090.g2 |
6090h2 |
[1,0,1,−3669,87742] |
−5460050774992969/189303843750 |
−189303843750 |
[2] |
8448 |
0.93696
|
|