Properties

Label 59850.q
Number of curves $2$
Conductor $59850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 59850.q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 59850.q do not have complex multiplication.

Modular form 59850.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 2 q^{11} + 4 q^{13} + q^{14} + q^{16} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 59850.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
59850.q1 59850b2 \([1, -1, 0, -1578192, 737270216]\) \(1413487789441083/55278125000\) \(17000614599609375000\) \([2]\) \(1769472\) \(2.4572\)  
59850.q2 59850b1 \([1, -1, 0, -255192, -34038784]\) \(5976054062523/1824760000\) \(561199235625000000\) \([2]\) \(884736\) \(2.1106\) \(\Gamma_0(N)\)-optimal