Properties

Label 5950.h
Number of curves $1$
Conductor $5950$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5950.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5950.h do not have complex multiplication.

Modular form 5950.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} - 2 q^{9} - 2 q^{11} + q^{12} + 5 q^{13} - q^{14} + q^{16} + q^{17} + 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5950.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5950.h1 5950e1 \([1, 0, 1, -22376, 1289398]\) \(-79290863149681/213248000\) \(-3332000000000\) \([]\) \(12672\) \(1.2771\) \(\Gamma_0(N)\)-optimal