Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-86004188x+241034475781\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-86004188xz^2+241034475781z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-111461427675x+11247376423461750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(415291/9, 261881201/27)$ | $6.1086581986291571873376879689$ | $\infty$ |
| $(29075/4, -29079/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 59150 \) | = | $2 \cdot 5^{2} \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $15607896869162076171875000$ | = | $2^{3} \cdot 5^{12} \cdot 7^{3} \cdot 13^{12} $ |
|
| j-invariant: | $j$ | = | \( \frac{932829715460155969}{206949435875000} \) | = | $2^{-3} \cdot 5^{-6} \cdot 7^{-3} \cdot 13^{-6} \cdot 31^{3} \cdot 43^{3} \cdot 733^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.5474332300980423975236033364$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4602395951502238421964799490$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9816338064509004$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.045171010535085$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.1086581986291571873376879689$ |
|
| Real period: | $\Omega$ | ≈ | $0.065872649948500635151196053455$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ 3\cdot2^{2}\cdot3\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $14.486166114240129619991021902 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.486166114 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.065873 \cdot 6.108658 \cdot 144}{2^2} \\ & \approx 14.486166114\end{aligned}$$
Modular invariants
Modular form 59150.2.a.cd
For more coefficients, see the Downloads section to the right.
| Modular degree: | 13934592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 2.3.0.1 | $3$ |
| $3$ | 3Cs | 3.12.0.1 | $12$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 32760 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 10 & 3 \\ 15873 & 32608 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14074 & 3 \\ 13269 & 32692 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 16381 & 36 \\ 0 & 9101 \end{array}\right),\left(\begin{array}{rr} 32725 & 36 \\ 32724 & 37 \end{array}\right),\left(\begin{array}{rr} 13103 & 32724 \\ 6534 & 32111 \end{array}\right),\left(\begin{array}{rr} 12286 & 31431 \\ 31395 & 28666 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 19 & 24 \\ 1440 & 1819 \end{array}\right),\left(\begin{array}{rr} 15095 & 32724 \\ 28686 & 1391 \end{array}\right)$.
The torsion field $K:=\Q(E[32760])$ is a degree-$175294937825280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/32760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 29575 = 5^{2} \cdot 7 \cdot 13^{2} \) |
| $3$ | good | $2$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
| $5$ | additive | $18$ | \( 2366 = 2 \cdot 7 \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 59150.cd
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 910.g3, its twist by $65$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{65}) \) | \(\Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-195}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.4.946400.2 | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{65})\) | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{14}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{14}, \sqrt{-195})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.8.2808830402560000.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.4131847462583726374236234747624000000000.1 | \(\Z/18\Z\) | not in database |
| $18$ | 18.0.164873442991428775155706691058992786558807373046875.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ord | add | split | ss | add | ss | ord | ord | ord | ord | ord | ss | ord | ss |
| $\lambda$-invariant(s) | 4 | 1 | - | 2 | 1,1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,3 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | 1 | - | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.