Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+2751x-11088\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+2751xz^2-11088z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+3564621x-570794418\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(9549/784, 3296103/21952)$ | $6.1995385990860061483016342411$ | $\infty$ |
| $(4, -2)$ | $0$ | $2$ |
Integral points
\( \left(4, -2\right) \)
Invariants
| Conductor: | $N$ | = | \( 58989 \) | = | $3 \cdot 7 \cdot 53^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1396354751127$ | = | $-1 \cdot 3^{2} \cdot 7 \cdot 53^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{103823}{63} \) | = | $3^{-2} \cdot 7^{-1} \cdot 47^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0196305693270827237046522420$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.96551538744897819336758232751$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9786808587681587$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.22001384726685$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.1995385990860061483016342411$ |
|
| Real period: | $\Omega$ | ≈ | $0.49572373192083788895220962557$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.1465168210523963875702447989 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.146516821 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.495724 \cdot 6.199539 \cdot 8}{2^2} \\ & \approx 6.146516821\end{aligned}$$
Modular invariants
Modular form 58989.2.a.n
For more coefficients, see the Downloads section to the right.
| Modular degree: | 74880 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $53$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17808 = 2^{4} \cdot 3 \cdot 7 \cdot 53 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 1696 \\ 14204 & 213 \end{array}\right),\left(\begin{array}{rr} 160 & 12773 \\ 4611 & 15106 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 16799 & 0 \\ 0 & 17807 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 17710 & 17795 \end{array}\right),\left(\begin{array}{rr} 17597 & 1696 \\ 14416 & 15477 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 17804 & 17805 \end{array}\right),\left(\begin{array}{rr} 17793 & 16 \\ 17792 & 17 \end{array}\right),\left(\begin{array}{rr} 14417 & 1696 \\ 14522 & 6255 \end{array}\right)$.
The torsion field $K:=\Q(E[17808])$ is a degree-$95855723937792$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17808\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 19663 = 7 \cdot 53^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 19663 = 7 \cdot 53^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 8427 = 3 \cdot 53^{2} \) |
| $53$ | additive | $1406$ | \( 21 = 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 58989a
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 21a4, its twist by $53$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{53}) \) | \(\Z/4\Z\) | 2.2.53.1-441.1-e2 |
| $2$ | \(\Q(\sqrt{-371}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{53})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{21}, \sqrt{53})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{53})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.19249378081968384.30 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.237646642987264.22 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.1534548635361.4 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.281855871801.2 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | ord | nonsplit | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ss | add |
| $\lambda$-invariant(s) | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | - |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | - |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.