Properties

Label 5850n
Number of curves $4$
Conductor $5850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5850n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5850n do not have complex multiplication.

Modular form 5850.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + q^{13} + q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5850n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5850.m3 5850n1 \([1, -1, 0, -3042, -61884]\) \(273359449/9360\) \(106616250000\) \([2]\) \(6144\) \(0.88791\) \(\Gamma_0(N)\)-optimal
5850.m2 5850n2 \([1, -1, 0, -7542, 167616]\) \(4165509529/1368900\) \(15592626562500\) \([2, 2]\) \(12288\) \(1.2345\)  
5850.m1 5850n3 \([1, -1, 0, -108792, 13836366]\) \(12501706118329/2570490\) \(29279487656250\) \([2]\) \(24576\) \(1.5811\)  
5850.m4 5850n4 \([1, -1, 0, 21708, 1132866]\) \(99317171591/106616250\) \(-1214425722656250\) \([2]\) \(24576\) \(1.5811\)